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Climate change impacts many species through shifts in habitat. The intensity of this impact will depend
on the dispersal rates of the species, the patchiness of the environment, and the velocity of habitat
change. Here we examine how dispersal affects projected future habitat availability for a threatened car-
nivore, the fisher (Pekania [Martes] pennanti). We used non-invasive genetic sampling to detect fisher
across their historical distribution in Montana and Idaho. This survey included 4846 non-invasive hair
snares, of which 288 identified fishers through mitochondrial DNA analysis. We modeled the distribution
of fisher across western Montana and northern Idaho using a suite of vegetative, topographic, and cli-
matic variables. We modeled future distribution using a global climate model and two climate change
scenarios (high emissions [A2] or reduced emissions [B2]) and three time steps (2030, 2060, and
2090). We incorporated the effects of dispersal ability and habitat patch size into our model by varying
the distance and enforcing a minimum patch size at which newly created habitat could be colonized. We
found that the probability of current fisher occurrence was highest given the presence of mesic forest
types with tall trees, high annual precipitation, and mid-range winter temperatures. Future predictions
show an increase in area of high-probability habitat under most dispersal assumptions. Interestingly,
we found a large contrast in results when minimum patch size and species dispersal capabilities were
considered. Our distribution model with full dispersal and no limits on patch size predicted a 24.5%
increase in fisher habitat by 2090, whereas a dispersal limit of 1 km through non-habitat (agricultural
fields and urban zones) and a minimum patch size yielded a loss of 25.8% of fisher habitat under this
same scenario. Varying dispersal appears to limit habitat availability more than minimum patch size
under most scenarios.

Published by Elsevier Ltd.
1. Introduction

As the warming trend in the global climate continues, climate-
mediated changes in habitat are predicted to force many species to
shift their distributions in order to persist (Chen et al., 2011; Engler
et al., 2011; Zhu et al., 2012). Complex interactions between tem-
perature and climatic water balance make the direction of these
shifts challenging to predict (Crimmins et al., 2011; Dobrowski
et al., 2013), thus requiring careful modeling approaches. One
emerging pattern, however, is that different ecosystem types are
predicted to shift their distributions at different velocities (Loarie
et al., 2009; Burrows et al., 2011). Montane ecosystems, such as
temperate coniferous forest and grasslands, have some of the slow-
est predicted velocities of change, while deserts, mangroves, and
flooded grasslands are predicted to shift in response to climate
change at the greatest rate (Loarie et al., 2009). For animals that ex-
ist exclusively in a given ecosystem, the ability to keep up with the
velocity of their changing habitat, or successfully adapt to a new
ecosystem, is crucial for their continued survival (Doak and Morris,
2010; Hansen et al., 2012). Species with narrow physiological lim-
its, such as pika, or those that are endemic to a specific habitat type
are less likely to be able to keep up with such shifts (McKelvey
et al., 2011; Sandel et al., 2011).

The dispersal ability of a species, as well as the degree of frag-
mentation of future habitat, will likely contribute to a given spe-
cies’ ability to keep up with the pace of climate-mediated habitat
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change (Walther et al., 2002). Vagile organisms, those that are eas-
ily able to move and disperse, will see an advantage over those that
are more sessile, as regional climates are replaced by novel condi-
tions (Araújo and Pearson, 2005). A species’ ability to move
through what is traditionally considered non-habitat, such as an
urban or agricultural matrix surrounding suitable habitat, may also
contribute to the success or failure of a species to keep pace with
shifting habitat. Thus, we would expect species that are dispersal
generalists to persist under rapid climate change as compared to
dispersal specialists. In addition, species that currently reside in
large contiguous habitats with few topographic breaks (e.g., the
boreal forest) may have an advantage over those that reside in hab-
itats that are naturally fragmented (e.g., the intermountain west).

To predict the range changes of an organism under a changing
climate, species distribution models are frequently used. Species
distribution models (SDMs) use locations at which an animal is
known to occur to determine the physical and environmental char-
acteristics most likely to predict species presence. While there are
many analytical approaches to create SDMs, one of the most fre-
quently used is a Maxent model (Phillips and Dudík, 2008; Elith
et al., 2011), which allows for presence-only occurrence data. A
limitation of Maxent and other commonly used SDMs is the lack
of ability to realistically incorporate dispersal (but see Engler
et al., 2012). Many SDMs are limited to either no dispersal or com-
plete dispersal, neither situation nor species specific.

The importance of incorporating dispersal when investigating
the effects of climate change on species persistence has been the
subject of much recent research. Pearson et al. (2006) demonstrate
the impact of dispersal on predicted gain or loss of suitable habitat
for four Proteaceae in the Western Cape of South Africa; under
some models the addition of dispersal can increase suitable habitat
by greater than 200%, while lack of dispersal reduced habitat. A
study by Early and Sax (2011) showed that dispersal ability and
population persistence were important predictors of amphibian
species’ ability to persist in the face of increased climate variability.
Schloss et al. (2012) modeled dispersal distances of mammals in
the western hemisphere and found that 20% of range contractions
in the modeled species would be due to an inability to keep pace
with shifting climate. Additionally, the role of connectivity, and
indirectly dispersal, between current habitat and patches predicted
to be suitable under a changing climate has been examined by
Lawler et al. (2013) in vertebrates and Imbach et al. (2013) in
plants. Both studies found that movement between suitable habi-
tat patches is crucial for species persistence given a changing
climate.

Here we use Maxent methodology to understand how the dis-
tribution of fishers (Pekania [Martes] pennanti) in the northern Uni-
ted States Rocky Mountains (north-central Idaho and western
Montana) responds to current and future climatic conditions, while
considering the effects of dispersal and minimum patch size. Fish-
ers are a medium-sized mustelid endemic to North America. They
are associated with old growth forests that contain ample cover,
structure and large diameter trees (Zielinski et al., 2006; Purcell
et al., 2009; Aubry et al., 2013; Schwartz et al., 2013). Their histor-
ical range spanned the northern portion of the continent from east
to west coasts, extending north to the southern Yukon, Canada,
with southern extensions into California, Wyoming, and the United
States east coast as far south as Kentucky (Lewis and Stinson,
1998). Currently, this range is being recolonized in the eastern
and midwestern United States, but remains restricted in the wes-
tern United States (Montana, Idaho, Washington, Oregon, Califor-
nia) due to historical habitat loss and human influences.

In this study, we model the current distribution of the northern
Rocky Mountain population of fishers with data from a non-inva-
sive genetic survey. We then examine predicted changes in the dis-
tribution of fishers in response to future climate conditions under
two carbon emissions scenarios and at three time steps (2030,
2060, and 2090). To allow prediction of fisher distributions into
the future, we created two Maxent models, one that includes veg-
etation, climate, and topography variables and one that only con-
siders climate and topography. Since both future vegetation and
climate are uncertain, we use the climate/topography-only model
for future predictions of fisher distribution to avoid the uncertainty
introduced from modeled vegetation variables. Finally, we expand
on standard Maxent models by providing a new approach with
which to explore the role of dispersal ability and habitat patch size
in allowing fisher to take advantage of shifting habitat as a result of
climate change.
2. Methods

2.1. Occurrence data

We used non-invasive genetic sampling to survey for fisher
presence across the study area (Zielinski et al., 2006; Kendall and
McKelvey, 2008). Several different sampling designs were used to
deploy hair snares. The majority of hair snares were deployed
across a grid consisting of 5 by 5 mile cells, with approximately
4 snares per grid cell. The choice of grid cell size and number of
snares was based on the literature and preliminary data (Zielinski
and Kucera, 1995; Squires et al., 2004; Schwartz et al., 2006). We
limited the area surveyed to all areas in Idaho and Montana with
predicted fisher habitat, as determined by the USGS GAP analysis
data. Once the 5 mi2 grid was overlaid on all fisher habitat, we lim-
ited potential survey grid cells to those with greater than 50% fish-
er habitat, which resulted in 1689 potential grid cells for survey.
From 2007 to 2011, we surveyed 610 of these cells, chosen largely
by availability to access during the winter. The remainders of the
cells were part of a finer scale survey for fisher lead by the Coeur
d’Alene Tribe that deployed similar methodologies. In total we de-
ployed 4846 hair-snares. We sequenced the cytochrome b region
of the mitochondrial DNA genome following the methods of Riddle
et al. (2003) or Schwartz (2007) to determine the species that
deposited the hair collected by the non-invasive snare and ob-
tained 288 genetic samples of fisher DNA (at 279 unique locations).
In addition to the non-invasive sampling, we also included harvest
data reported by fur trappers in Montana from 1980 to 2010
(N = 47; Vinkey et al., 2006), resulting in a total sample size of
326 fisher locations. To examine the impact of using data collected
from individuals that were part of a reintroduction effort, we con-
sidered a second dataset that did not include locations from a re-
cent reintroduction of fishers in the Cabinet Mountains of
Montana from 1989 to 1991, as defined by Heinemeyer (1993).

Species distribution modeling can be sensitive to the extent of
the background chosen; thus, selecting an extent that is overly
large or small may influence the predicted distribution (Elith
et al., 2011). We chose the extent of the study area based on the
minimum hydrologic boundaries that contained all fisher occur-
rences (Fig. 1). Fisher surveys rarely occurred in wilderness areas;
thus, to prevent the use of these areas as background locations in
modeling, we used a mask to remove all unsampled wilderness
areas, as well as all rivers and lakes, from the study area before
running the model.
2.2. Environmental data

We initially considered a suite of vegetative, topographic, and
climatic variables potentially important to fisher distribution
(Zielinski et al., 2010; Purcell et al., 2009; Raley et al., 2012; Aubry
et al., 2013; Table 1). Vegetation data were calculated from land-
cover maps produced by LandFire version 1.1 (U.S. Forest Service)



Fig. 1. Geographic extent of the study area, spanning western Montana and
northern Idaho; cities and Glacier National Park locations are provided for
reference. The inset shows the study area (in dark grey) in relation to the United
States.
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and satellite imagery obtained from LandsatTM 5. We used the
‘Canopy Cover’ (CC), ‘Canopy Height’ (CH), and ‘Existing Vegetation
Type’ (EVT) layers from LandFire. We transformed Canopy Cover,
Canopy Height, and Existing Vegetation Type into continuous vari-
ables to reduce map inaccuracies. We did this by first simplifying
the existing categorical values for each variable. Canopy cover
was categorized into Non-Forest, 0–10%, 10–30% cover, 30–60%
cover, and 60–100% cover. Canopy height was categorized to
Non-Forest, 0–10 m, 10–20 m, and 25–50 m. Existing Vegetation
Table 1
Environmental variables considered for use in the model; not all variables were used in t

Covariate Resol’n Source Des

Vegetation Gross primary productivity 1 km MODIS; S.
Running

Mea

Canopy cover 30 m LandFire
Canopy height 30 m LandFire
Existing vegetation type 30 m LandFire
Normalized difference vegetation
index

30 m Landsat 5 TM Ind

Brightness 30 m Landsat 5 TM Tas
Greenness 30 m Landsat 5 TM Tas
Wetness 30 m Landsat 5 TM Tas

Topographic Elevation 100 m USGS Orig
Slope 100 m USGS Calc
Annual potential solar radiation 100 m USGS Calc
Topographic position index 100 m USGS Mea

Climate Mean winter precipitation 800 m PRISM Ave
Mean winter minimum
temperature

800 m PRISM Ave

Mean winter maximum
temperature

800 m PRISM Ave

Mean summer minimum
temperature

800 m PRISM Ave

Mean summer maximum
temperature

800 m PRISM Ave

Annual precipitation 800 m Moscow FSL Mea
Degree days less than 0 800 m Moscow FSL Ave

196
Growing season precipitation 800 m Moscow FSL Apr
Mean annual temperature 800 m Moscow FSL Mea
Mean temp in coldest month 800 m Moscow FSL Mea
Mean temp in warmest month 800 m Moscow FSL Mea
Type (EVT) was categorized into Other (including urban, agricul-
tural, non-forest, water, rock, and ice), Mixed Conifer (including
Dry-Mesic Montane Mixed Conifer, Mesic Montane Mixed Conifer,
and Ponderosa Pine Forest), Spruce-Fir (including Subalpine Wood-
land, Lodgepole Pine, Dry-Mesic Spruce-Fir, Mesic-Wet Spruce-Fir,
and Aspen-Mixed Conifer Forest), Riparian (including Montane
Riparian, Subalpine/Upper Montane Riparian, and Conifer Swamp),
and Douglas Fir (including Montane Douglas-Fir Forest and Doug-
las-Fir Forest Alliance). Categories for EVT were determined based
on visual analysis of the distribution of each existing LandFire cat-
egory, so that categories that were in close spatial proximity and/or
of similar ecological niche were grouped together into a single cat-
egory. We then converted each newly created category into a bin-
ary variable using ArcMap v10, so that at any given location, the
value for EVT Mixed Conifer was either 1 (Mixed Conifer present)
or 0 (Mixed Conifer absent). This binary variable was than
smoothed using a circular ‘moving window’, so that each 100 m2

raster cell represented the proportion of each LandFire variable
category in a surrounding 900 m radius neighborhood. Thus from
three categorical LandFire variables (CC, CH, and EVT), we created
14 indices of the proportion of each variable category in a 900 m
neighborhood.

Since previous studies have indicated the importance of mesic
and riparian forest types for fisher habitat in the U.S. Rocky Moun-
tains (Jones and Garton, 1994; Roy, 1991; Schwartz et al., 2013),
we also considered single categories of EVTs as possible predictors
of fisher presence. For these variables, we used only Dry-Mesic
Montane Mixed Conifer, Mesic Montane Mixed Conifer, and Mon-
tane Riparian Systems as binary variables, again with a moving
window so that each 100 m pixel represented the proportion of a
given forest type within a 900 m circular neighborhood.

Aubry et al. (2013) show in a meta-analysis of fisher data from 8
studies conducted on the west coast of North America that both
vegetation cover and a heat loading index (a metric that combines
aspect, slope, and latitude on temperature accumulation) are
he final model.

cription

n GPP from 2000 to 2006

ex of vegetation productivity

seled cap index, measure of soil
seled cap index, measure of vegetation
seled cap index, measure of soil and canopy moisture

inally from 30 m DEM, bilinearly interpolated to 100 m
ulated in ArcGIS from elevation using spatial analyst
ulated in ArcGIS using solar analyst
sure of terrain variability; positive indicates ridges, negative indicates drainages

rage December, January, and February precipitation
rage December, January, and February minimum temperature

rage December, January, and February maximum temperature

rage June, July, and August minimum temperature

rage June, July, and August maximum temperature

n annual precipitation, in mm, 1961–1990
rage of the summation of the difference between average monthly temp and 0o,
1–1990
il to Sept precipitation, 1961–1990
n annual temperature, 1961–1990
n temp for the coldest month, 1961–1990
n temp for the warmest month, 1961–1990
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important for fisher habitat. Thus, we also used Landsat satellite
imagery to calculate the tasseled cap vegetation indices. These in-
clude brightness, a measure of soil reflectivity, greenness, a mea-
sure of green vegetation, and wetness, a measure of moisture in
the soil and vegetation (Kauth and Thomas, 1976).

For topographic variables, we used a 30 m digital elevation
model (National Elevation Dataset, USGS) and derived slope, an-
nual solar radiation, and topographic position index from this ele-
vation layer using ArcGIS 10.0 (Environmental Systems Research
Institute, 2011, Redlands, CA). Annual solar radiation was calcu-
lated using the ‘Area Solar Radiation’ tool, which calculates the to-
tal incoming direct, diffuse, and reflected insolation over the space
of one year. Topographic position index (TPI) is a measure of ter-
rain variability, with negative values indicating valleys and posi-
tive values indicating ridges (Weiss, 2001), and was found to be
a significant predictor of fisher distribution in Schwartz et al’s
(2013) radiotelemetry-based habitat research in Idaho’s Clearwa-
ter subbasin. We calculated TPI at three scales: 300 m, 1000 m,
and 2000 m.

Climatic variables considered included mean annual precipita-
tion, precipitation during the growing season, annual mean tem-
perature, mean temperature during the coldest month of the
year, mean temperature during the warmest month of the year,
and the number of degree days less than zero. We used climate
data compiled by the Moscow Forestry Sciences Laboratory (Rocky
Mountain Research Station, U.S. Forest Service). Data was compiled
from 1961 to 1990 at an 800 m spatial resolution.

All variables were created in raster format in ArcMap v10, and
resampled to 100 m2 resolution.

2.3. Modeling

To avoid including highly correlated variables in the model, we
screened all variables for pairwise correlation using Pearson’s cor-
relation coefficient in the statistical package R (R Development
Core Team, 2010). We considered variables to be highly correlated
if r P 0.7, and kept only the variable that best predicted fisher
presence when used as a univariate predictor. This method of var-
iable selection resulted in 18 variables for use in modeling
(Table 2).

We ran two models in Maxent version 3.3.3e (Phillips et al.,
2006; Phillips and Dudík, 2008), a ‘full’ model, including all 18 veg-
etative, topographic, and climatic variables, and a ‘climate/topog-
raphy only’ model, including only six topographic and climatic
variables (Table 3). We randomly partitioned the data into training
Table 2
Variables used in full distribution model, ranked by their percent contribution to the
model, as determined by Maxent.

Variable Percent contribution

Canopy height, 25–50 m 19.7
Montane Riparian 16.3
TPI 2000 14.7
Mean annual precipitation 13.3
Mean temp in coldest month 6.3
Canopy height, 0–10 m 4.8
Gross primary productivity 4.4
Spruce/fir and lodgepole 4.2
Annual potential solar radiation 2.9
Wetness 2.7
Slope 2.3
Canopy cover, 10–30% 1.8
Brightness 1.7
Dry-mesic mixed conifer 1.1
Canopy Height, 10–25 m 1.1
NDVI 1
Variation in canopy cover 1
Variation in canopy height 0.6
and testing occurrences, with two thirds of the data used to train
the model and one third of the data used for testing. We accepted
the default values recommended by Maxent for the regularization
multiplier (1), a constant supplied by the user which limits model
overfitting, and the number of random background locations se-
lected from the study area (N = 10,000) for use in constructing
the distribution of environmental covariates. To generate measures
of model variance, we used k-fold cross-validation (here we used
10-fold), which divides the data into k subsets and runs the model
k times, each time using k-1 of the subsets for training, and a dif-
ferent subset for testing. This approach has the advantage of using
all of the data for model training, as well as producing estimates of
model variation by averaging model results over all k iterations of
the model.

We evaluated model performance using the area under the
curve (AUC) of a receiver operating characteristic (ROC) plot (Field-
ing and Bell, 1997). This metric plots sensitivity (or true positives)
against 1 – specificity (or false positives) for a range of threshold
values, with the area under the curve providing a measure of the
ability of the model to discriminate between presences and ab-
sences. Models with an AUC of 0.5 are no better than random,
while an AUC of 1.0 would provide perfect discriminatory ability.

2.4. Future climate scenarios

To predict changes in fisher habitat due to changes in climate,
we used future climate variables calculated by the Moscow For-
estry Sciences Laboratory (USDA Forest Service, Rocky Mountain
Research Station) which are based on 1961–1990 climate normals.
We selected a single general circulation model (Hadley Centre Cou-
pled Model, version 3; Collins et al., 2001). Under this model, we
selected two emissions scenarios: A2, the more severe scenario,
which represents an increasing population and more regional eco-
nomic development, and B2, the more conservative scenario,
which represents continuing but slower population growth and
more emphasis on environmental protection (IPCC 2007). We
chose these two scenarios to provide a lower and upper bound of
projected fisher habitat, from conservative to severe. We also chose
three time steps at which to project the model (2030, 2060, and
2090).

Once projected, we converted the future probability habitat
maps into binary maps using a threshold value chosen to maximize
the sum of sensitivity and specificity (Jiménez-Valverde and Lobo,
2007; Freeman and Moisen, 2008). We compared the percent loss
or gain in suitable fisher habitat from current conditions to each
future scenario by subtracting current fisher area from future fish-
er area, dividing by current fisher area, and multiplying by 100.

2.5. Dispersal and patch size

Predicted future distributions may be inapplicable to a species if
individuals are not able to physically keep up with the projected
pace of a shifting distribution (Zhu et al., 2012). To model the ef-
fects of dispersal distance across non-habitat, we used the binary
Table 3
Variables used in climate-only distribution model, ranked by their percent contribu-
tion to the model, as determined by Maxent.

Variable Percent contribution Permutation importance

Mean annual precipitation 33.9 28.9
TPI 2000 29 21.2
Mean temp in coldest mo 27.3 32.8
Slope 6.2 12.9
Solar radiation 2.1 3.9
Persistent Snow 1.6 0.4
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future habitat maps created in the previous section for each time
step. We considered anything below this binary threshold
non-habitat; this was largely open areas, agricultural valleys, or
dry forest. We compared each future time step binary variable to
the current distribution in binary form, and grouped future habitat
into four categories: unsuitable habitat remaining unsuitable, suit-
able habitat remaining suitable, unsuitable habitat becoming suit-
able, and suitable habitat becoming unsuitable. We then used a
circular moving window in ArcMap v10 to create buffers of given
dispersal distances around all suitable habitat from the current
binary distribution. We used the ‘‘Extract by Mask’’ tool in ArcMap
v10 to calculate areas in which this buffer and the four category
future habitat maps overlapped, and counted only future suitable
habitat (either suitable remaining suitable or unsuitable becoming
suitable) within a specified dispersal distance as occupiable. We
performed this analysis for each future time step and climate
scenario, with dispersal distances at 1 km, 1.5 km, 2 km, 4 km,
and 10 km, as well as no and unlimited dispersal.

In addition to the ability to physically reach newly suitable hab-
itat, the patch size of the future habitat can also influence whether
a species will be able to utilize newly available habitat. We used a
patch size of 125 km2 as the minimum size at which a population
of fishers could be maintained, based on an average home range
size of 25 km2 per individual and an arbitrary minimum of five
home ranges needed to maintain a population (Reed and Bryant,
2000). We based this home range size on the average between a
male home range size of approximately 30–40 km2 and a female
home range of 10–16 km2 (Arthur et al., 1989; Zielinski et al.,
2004). We assume that each home range will have at least one fe-
male and potentially one male, as fishers of opposite sexes will tol-
erate home range overlap (Powell and Zielinski, 1994), as well as
several juveniles, for a total population of between 6 and 25 indi-
viduals (Powell and Zielinski, 1994). We chose this number as the
smallest possible population that could be maintained over the
short term to allow long-term population persistence (Reed and
Bryant, 2000).

To determine the impact of minimum patch size on future
available habitat, we used the same binary habitat maps as were
used for dispersal distances, detailed above. We converted each
binary habitat raster to polygons using ArcMap v10. Each 100 m2

raster cell was converted to a polygon, and all adjacent polygons
were grouped. Each group of polygons represented one habitat
patch. We then performed the same comparison as detailed in
the dispersal section between the current binary habitat layer, buf-
fered by various dispersal distances, and each future habitat layer
grouped into four habitat suitability categories. In this case, how-
ever, the suitable habitat was only considered ‘available’ if it was
within the given buffer distance and part of a patch that was great-
er than 125 km2. We then summed all available habitat patches
that fit these criteria, and compared this to the amount of currently
available habitat in patches greater than 125 km2 to determine the
percent change in available habitat. We again used dispersal dis-
tances of 1 km, 1.5 km, 2 km, 4 km, and 10 km, as well as no and
unlimited dispersal.
3. Results

3.1. Current fisher distribution

The model showing current fisher distribution produced by
Maxent using vegetative, topographic, and climatic variables per-
formed well, with a test AUC of 0.87 (SD = 0.017). When we exam-
ined the effect of including animals reintroduced into the Cabinet
Mountains on predicted fisher distribution, we found little differ-
ence in model outputs: for the model with no reintroduced
locations, the testing AUC was 0.845 (SD = 0.020), the order of var-
iable importance did not change, and the spatial distribution of
predicted habitat suitability was visually indistinguishable (map
not shown). Therefore, we used the model with both reintroduced
and native fisher locations, and did not further consider the model
in which Cabinet Mountain reintroduction animals were omitted.

The variables that contribute the most to fisher habitat suitabil-
ity are 25–50 m canopy height (19.7%), montane riparian vegeta-
tion (16.3%), topographic position index (14.7%), and mean
annual precipitation (13.3%; Table 2), as determined by percent
contribution to the model, an index created by Maxent based on
the increase in model performance with each variable addition.
Mean temperature in the coldest month was also a good contribu-
tor to the model (6.3%). All other variables had an individual per-
cent contribution to the model of 5% or less (Table 2). Marginal
response curves generated by Maxent, which show predicted hab-
itat suitability based on one variable while holding all other vari-
ables at their average value (Phillips et al., 2006), show that
probability of suitable habitat was highest with greater presence
of canopy height of 25–50 m, greater presence of montane riparian
landcover, negative values of TPI (drainages), and greater mean an-
nual precipitation. The current distribution of fisher within the
study area, as predicted by the model, is shown in Fig. 2(A).

The same model, but without vegetation variables, produced a
test AUC of 0.84 (SD = 0.018); variable importance is given in
Table 3. In this model, the variables with the greatest percent con-
tribution to the model were mean annual precipitation (33.9%),
topographic position index (29%), and mean temperature of the
coldest month (27.3%). Based on the marginal response curves,
the probability of suitable fisher habitat was highest with greater
mean annual precipitation, negative values of TPI, and mid values
of mean temperature in the coldest month. The current distribu-
tion of fisher within the study area predicted by the climate/topog-
raphy only model is shown in Fig. 2(B).

Using a threshold criterion of the maximized sum of specificity
and sensitivity (0.102), the ‘full’ model estimated an area of
36,484 km2 of suitable fisher habitat within the 140,818 km2 study
area. For the climate/topography-only model, the threshold value
at which the sum of sensitivity and specificity were maximized
was 0.220. Using this threshold, there are an estimated
30,746 km2 of suitable fisher habitat within the study area. The dif-
ferences in predicted habitat suitability between the full and the
climate only model are shown in Fig. 3.

3.2. Future fisher distribution

Predictions of future fisher distribution were based on the cli-
mate/topography-only model. Given the greater fossil-fuel use A2
scenario, fisher habitat is predicted to increase over each time step,
with a 12.1% increase from current conditions to 2030, a 21.4% in-
crease from current to 2060, and a 24.5% increase from current to
2090. Under scenario B2, the lower population, lower fossil-fuel
use scenario, predicted fisher habitat is expected to undergo a sim-
ilar, but less pronounced, expansion, with an initial decrease of
10.7% from current conditions to 2030, followed by an increase
of 1.6% from current to 2060, and a final increase of 9.2% from cur-
rent to 2090 (Fig. 4). The location of suitable fisher habitat is also
predicted to change, with a greater probability of fisher occurrence
in the northern portion of the study area (Fig. 4).

3.3. Dispersal and patch size

The increases in fisher habitat mentioned above under various
climate change scenarios assume unimpeded, complete dispersal.
If fisher populations are completely unable to track the habitat
changes produced by climate change, fisher habitat is expected



Fig. 2. Current distribution of fishers as modeled with environmental, climate, and topographic variables (A) or climate/topography-only variables (B).

Fig. 3. Comparison between binary predictions for the full model (blue), the climate
only model (orange), and the areas in which the models agree (green).
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to decrease under both emissions scenarios despite the overall net
increase in predicted suitable habitat. Scenario A2 shows a more
pronounced loss (47.0%) than scenario B2 (27.7%; Fig. 5A and C).
However, the natural history of a habitat specialist with adequate
dispersal abilities suggests that neither a full dispersal nor a no dis-
persal model is appropriate. Fig. 5 shows the percent increase in
habitat associated with improvements in dispersal ability
through non-habitat (e.g., agricultural valleys, cities, etc.). The
most pronounced change occurred in the last time step of the
A2 scenario climate model, where a change in dispersal from
1 km to 10 km increased available habitat by 37.3% (Fig. 5A).

When a minimum patch size of 125 km2 is considered, the cli-
mate/topography-only model predicted approximately
23,895 km2 of suitable fisher habitat under current conditions
(a 22% decrease from the model with no patch size restrictions).
The predicted future percent habitat gain is lower under both A2
and B2 scenarios, with a maximum gain of 20.2% by 2090 for the
A2 scenario under unlimited dispersal (Fig. 5B), as compared to
24.5% with no patch size limit (Fig. 5A). Though decreased, hab-
itat gains are still seen for three of the dispersal distances
(unlimited, 10 km, and 4 km) by 2090 under the A2 climate sce-
nario (Fig. 5B). Climate scenario B2 never results in a habitat gain
when a minimum patch size is enforced, and instead incurs a
habitat loss of 1.2% by 2090 under unlimited dispersal ability,
and a loss of 41.7% with no dispersal ability (Fig. 5D).
4. Discussion

The most important finding from this study is the contrast in
results that occurs when species distribution models are used
without regards to minimum patch size and species dispersal
capabilities. Projecting our climate-only model under the more
severe climate change scenario with full dispersal and no limits
on patch size shows a 24.5% increase in predicted fisher habitat
by 2090. Limiting dispersal to 1 km of movement through non-
habitat (agricultural fields and urban zones) and enforcing a
minimum patch size requirement results in a loss of 25.8% of
available fisher habitat under this same scenario, despite the
overall increase in suitable habitat. In general, varying dispersal

appears to limit habitat availability more than minimum patch
size, although there is an interaction between the two. This change
is readily apparent when considering the change between the
large, contiguous block of habitat predicted currently versus the
more fragmented pieces of habitat predicted by 2090, as seen in



Fig. 4. The percent gain or loss of fisher habitat as predicted by two emissions scenarios (A2 and B2), and at three time steps (2030, 2060, 2090). Cool colors represent habitat
loss, warm colors represent habitat gain, and yellow is neutral.
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Supplemental Fig. 1. While total area increases between these time
steps, the amount of contiguous habitat decreases. We discuss
these findings below in relation to the habitat variables that define
the fisher species distribution model.

Fisher distribution within our study area is characterized by
drainages with riparian-type habitat, tall trees (correlated with
mixed mesic habitat types), higher mean annual precipitation,
and mid-range temperatures during the winter. This finding is in
agreement with what is currently known about fisher habitat in
other areas of its range, such as Oregon and Washington along
the west coast (Raley et al., 2012; Schwartz et al., 2013; Aubry
et al., 2013).

Previous work on west coast populations of fishers found that
dense forest canopy was one of the most consistent predictors of
fisher habitat. Weir and Corbould (2010) found that fishers se-
lected stands with greater than 30% canopy cover, Purcell et al.
(2009) found canopy cover to be the most important variable at
predicting fisher resting sites, and Zielinski et al. (2004) showed
that higher average canopy cover was critical for predicting fisher
resting habitat. In fact, Purcell et al’s (2009) study, based on radio-
telemetry data, recommended the maintenance of stands with at
least 61% canopy cover to maintain fisher habitat. Our results con-
cur with this finding, although we modeled the response to canopy
height, a variable which was highly correlated (r = 0.85) with dense
canopy cover. We found that the proportion of canopy consisting of
trees between 25 and 50 m tall (the largest tree height category),
was the most important predictor of fisher occurrence in the
northern Rocky Mountains, based on percent contribution to the
full model. Tree height was also highly correlated with mesic and
dry-mesic montane mixed conifer forest (r = 0.80), a habitat layer
that we expected to be significant based on our radio-telemetry
studies. In univariate comparisons, however, tree height was the
better predictor of fisher habitat; thus, we did not include mixed
mesic forests in the model.

Another important predictor of fishers’ occurrence in the full
model was the presence of montane riparian vegetation, as charac-
terized by landcover data from LandFire. This landcover type oc-
curs across a wide range of elevations, from 900 m to 2800 m,
and consists of a variety of tree-dominated communities and an
assortment of shrubs found along rivers and canyons (NatureServe,
2008). The importance of riparian vegetation for the presence of
fishers has been shown in studies conducted in British Columbia,
the southern Sierra Nevada in California, and northwestern Mon-
tana (Zielinski et al., 2004). This preference for a landcover type
that has a variety of trees and shrubs of various sizes may reflect
a previously demonstrated fisher preference for a variety of forest
structures, successional stages, and plant communities, which is
thought to maximize hunting opportunities and provide cover
from predation (Lofroth et al., 2010; Schwartz et al., 2013).

Across both the full model and the climate/topography-only
model, we found that fishers were more likely to occur in areas with
higher mean annual precipitation, mid-range minimum winter
temperatures, and topography in the form of drainages or valleys.
These abiotic factors indicate a fisher preference for wetter, milder
climates, such as those found in fisher habitat along the west coast
in Oregon and California, and along parts of New England. Interest-
ingly, one of the locations within our study area in the Rocky
Mountains with the greatest fisher abundance is the Clearwater
subbasin in Idaho, an area considered a glacial refugia, with a
current pacific maritime climate (Brunsfeld and Sullivan, 2005;



Fig. 5. Percent changes in amount of suitable habitat available to fishers. The top row shows the more severe climate scenario A2 with no patch restrictions (A) and when a
minimum patch size of 125 km2 is considered (B). The bottom row shows the more conservative climate scenario B2, with no patch restrictions (C) and with patch size
restrictions (D).

96 L.E. Olson et al. / Biological Conservation 169 (2014) 89–98
Shafer et al., 2010). Fisher have also been shown to avoid dry
habitat types, which in the west are frequently dominated by pon-
derosa (Pinus ponderosa) and lodgepole pine (Pinus contorta) and
lack understory cover, needed for protection from predators and
to provide habitat for prey (Jones and Garton, 1994; Schwartz
et al., 2013). Our model found no support for fisher selection for
dry forests.

Deep snow pack is also largely avoided by fishers (Raine, 1983;
Krohn et al., 1995, 2005). Krohn et al. (2005) suggest that fisher
foot loading is greater than 2 times that of martens, which makes
travel through deep snow energetically inefficient. Carr et al.
(2007) show that snow depth limits fisher dispersal in Ontario,
Canada among five populations. These results are consistent with
our finding that fisher prefer locations not only with precipitation,
but also precipitation in milder climates.

Both the full model including vegetative covariates and the cli-
mate/topography-only model were good predictors of fisher loca-
tions, with very similar test AUC values (0.87 and 0.84,
respectively). Frequently, climate-only models are criticized for
ignoring covariates such as landcover or remotely sensed vegeta-
tive indices, since this may lead models to miss important biolog-
ical factors such as the presence of food resources or protective
cover (Pearson and Dawson, 2003). Our results show little differ-
ence between the predicted distributions when only climate and
topography variables were used and when landcover variables
were included. The main differences, based on the binary division
of the models into suitable and unsuitable habitat, appear to be in
the south of the study area, where the climate/topography-only
model tends to predict suitable habitat in lower elevation and
wet areas; and the north of the study area, where the full model
predicts suitable habitat in older forests with large trees. The cli-
mate/topography-only model relies more strongly on annual
precipitation and TPI than does the model which includes landcov-
er variables, resulting in a predicted distribution more likely to in-
clude river and valley bottoms.

Based on our climatic projection results, fisher distribution in
the study area will likely shift north and east over time, and will
show an increase in total area of suitable, although not necessarily
contiguous, habitat. This shift is similar in direction to the shift ob-
served between 1916 and 2005 for minimum temperature in this
region (Dobrowski et al., 2013). Under the more severe emissions
scenario (A2), the habitat shift is marked by a loss of suitable hab-
itat near the center of the fisher distribution, in northern Idaho
south of Moscow, ID, and a gain of suitable habitat in the moun-
tainous areas of Glacier National Park and areas south of Kalispell,
MT (Fig. 4). The more conservative emissions scenario (B2) also
shows this pattern, but does so at a later time step. As global tem-
peratures rise, the climate of the Rocky Mountains is projected to
become more similar to the Pacific Northwest, with warmer, wet-
ter winters (Littell et al., 2011). This change in regional climate is
likely to favor species like the fisher, which appear to prefer wet,
maritime-like forests and lower snowpack.

Species affected by climate change must be able to follow shifts
in suitable habitat in order to persist. Fishers are capable of large
dispersal distances (Schwartz et al. 2013), with males generally
moving farther than females. In an Oregon study, juvenile males
were found to disperse an average of 29 km, while females dis-
persed an average of 6 km (Aubry and Raley, 2006). Since juvenile
fishers primarily disperse during winter (Arthur et al., 1993) and
fisher dispersal may be limited by snow (Carr et al., 2007), a cli-
matic shift that results in less snow may actually assist juvenile
fisher dispersal. Adult fishers are also capable of long distance
movements, with a study by Aubry and Raley (2006) showing
that adult males during the breeding season frequently make
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extra-territory explorations of 7–30 km before returning to their
original territory.

Movement through non-habitat between suitable habitat
patches at a large scale, however, can be challenging due to in-
creased vulnerability to predators, increased exposure to anthro-
pogenic factors, and decreased food availability between patches
(Greenwood, 1980; Van Vuren and Armitage, 1994; Yoder et al.,
2004). The success of dispersing individuals in surviving the jour-
ney and establishing a territory in a new location is not assured.
A study in British Columbia found that 55% of transient fishers
(those with no established home range) died (Weir and Corbould
(2010)). Additionally, anecdotal evidence based on two popula-
tions of fishers in Oregon separated by approximately 20 km of
non-habitat (valley bottom and developed land) indicates that no
dispersal between the two populations has taken place in approx-
imately 10 generations of fishers (Swiers et al., Submitted). Thus,
while fishers may be capable of the dispersal movements required
to keep pace with their changing habitat, the challenges posed by
moving through non-favorable habitat may prevent them from
adequately doing so. The northern U.S. Rocky Mountains have been
shaped by erosion and glaciation, and can be characterized by a
series of mountain ranges separated by large intermountain val-
leys. Many of these valleys are semi-arid, naturally dominated by
grasses and shrubs, and often highly developed. While our maxi-
mum dispersal distance of 10 km is within the dispersal capability
of fishers in high quality fisher habitat, these uninhabitable valleys
are predicted by our model to remain a barrier at all future time-
steps (see Supplemental Fig. 1) and may limit fishers’ ability to col-
onize new habitat. In this case, the results of our dispersal simula-
tion show a large disparity between the amounts of suitable
habitat available to fishers if they are capable of successful long-
distance dispersal versus if they are unable to disperse.

The fragmented distribution of potentially suitable habitat may
also prevent fishers from taking advantage of all newly available
areas. The areas in which future habitat is predicted to occur under
both climate scenarios are steeply mountainous, such as the Lewis
Range in Glacier National Park, the Purcell Mountains in northwest
Montana, and the Selkirk Mountains in the northern tip of Idaho
(Fig. 4, time step 2090). These mountain ranges have a wide range
of elevation and topography, resulting in a variety of climatic con-
ditions and ‘islands’ of suitable habitat as the climate changes. The
areas that are predicted to become less suitable, such as the Clear-
water Mountains in Idaho, are more uniform in elevation and cli-
mate, resulting in a large loss of contiguous habitat as climate
changes. A study on marten (Martes americana), a close relative
of fisher, showed that marten distribution in the northern Rocky
Mountains would also become increasingly fragmented under a
warming climate (Wasserman et al., 2012).

With a minimum patch size, the total amount of future habitat
gain for fishers is reduced when dispersal distance is less than 4 km
per time step. However, the amount of available fisher habitat is
still projected to increase by 2090 under the more severe climate
scenario, A2, if fishers have dispersal abilities between 4 and
10 km per time step. Thus, though predicted future habitat is more
fragmented, the overall increase in suitable habitat is such that
fishers may still incur a net gain, given moderate dispersal abilities.
The predicted future habitat under climate scenario B2, however,
which is based on reduced emissions, predicts markedly different
future habitat availability. This scenario predicts less pronounced
climate and precipitation changes, which results in less area con-
verting to suitable fisher habitat (Fig. 5C) Newly gained habitat is
less contiguous, as well, resulting in a small to considerable
(41%) future habitat loss (depending on fisher dispersal ability)
when only patches greater than 125 km2 are considered (Fig. 5D).
Our model shows that the more extreme climate scenario will con-
vert more land into suitable habitat, indicating that fisher may
benefit from climate warming. Since climate scenarios B2 and A2
are similar in direction but differ in magnitude, the loss of habitat
under the more conservative scenario (B2) suggests that the re-
sponse of fisher habitat to increases in temperature and precipita-
tion is not linear. Further work to identify an upper limit of climate
warming, at which fisher habitat would cease to be favorably im-
pacted, would be a valuable contribution.

The results of our model incorporating dispersal into shifting
distributions highlight the importance of considering the mainte-
nance of dispersal for fisher conservation. While our model pre-
dicts an expanded fisher distribution under future climate
warming scenarios, if fishers are unable to achieve regular dis-
persal distances greater than 4 km through unsuitable habitat,
the total area of available habitat will likely decline over time.
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